高中数学经典说课稿

时间:2023-12-16 23:54:30
高中数学经典说课稿

高中数学经典说课稿

作为一名人民教师,就不得不需要编写说课稿,编写说课稿是提高业务素质的有效途径。快来参考说课稿是怎么写的吧!下面是小编整理的高中数学经典说课稿 ,仅供参考,欢迎大家阅读。

高中数学经典说课稿 1

本节课讲述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情教法分析:

对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合

这类学生的心理发展特点,从而促进思维能力的进一步发展。

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②

通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,??;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

3. 0,0,0,0,0,0,??.; √ d=0

4. 1,2,3,2,3,4,??;×

5. 1,0,1,0,1,??×

其中第一个数列公差<0,>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

2、第二个重点部分为等差数列的通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,则据其定义可得:

a2 - a1 =d 即: a2 =a1 +d

a3 – a2 =d 即: a3 =a2 +d = a1 +2d

a4 – a3 =d 即: a4 =a3 +d = a1 +3d

??

猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:

an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

a2 – a1 =d

a3 – a2 =d

a4 – a3 =d

??

an – an-1=d

将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

(1)

当n=1时,(1)也成立,

所以对一切n∈N﹡,上面的公 ……此处隐藏31237个字……线垂直,最小值等。

1-5教学目标及确定依据

教学目标

(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

(2)培养学生探究性思维方法和由特殊到一般的研究能力。

(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

确定依据:

中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)

1-6教学重点、难点、关键

(1)重点:点到直线的距离公式

确定依据:由本节在教材中的地位确定

(2)难点:点到直线的距离公式的推导

确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

分析“尝试性题组”解题思路可突破难点

(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

2.教法

2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

确定依据:

(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

(2)事物之间相互联系,相互转化的辩证法思想。

2-2教具:多媒体和黑板等传统教具

3.学法

3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

一句话:还课堂以生命力,还学生以活力。

3-2学情:

(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

3-3学具:直尺、三角板

3. 教学程序

时,此时又怎样求点A到直线

的距离呢?

生: 定性回答

点明课题,使学生明确学习目标。

创设“不愤不启,不悱不发”的学习情景。

练习

比较

发现

归纳

讨论

的距离为d

(1) A(2,4),

:x = 3, d=_____

(2) A(2,4),

:y = 3,d=_____

(3) A(2,4),

:x – y = 0,d=_____

尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。

请三个同学上黑板板演

师: 请这三位同学分别说说自己的解题思路。

生: 回答

教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。

视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。

说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)

师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线

:Ax+By+C=0(A,B≠0)的距离又怎样求?

教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?

生:方案一:根据定义

方案二:根据等积法

方案三: ......

设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。

师生一起进行比较,锁定方案二进行推证。

“师生共作”体现新型师生观,且//时,又怎样求这两线的距离?

生:计算得线线距离公式

师:板书点到直线的距离公式,两平行线间距离公式

“没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。

反思小结

经验共享

(六 分 钟)

师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?

生: 讨论,回答。

对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。

共同进步,各取所长。

练习

(五 分 钟)

P53 练习 1, 2,3

熟练的用公式来求点线距离和线线距离。

再度延伸

(一 分 钟)

探索其他推导方法

“带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。

4. 教学评价

学生完成反思性学习报告,书写要求:

(1) 整理知识结构

(2) 总结所学到的基本知识,技能和数学思想方法

(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因

(4) 谈谈你对老师教法的建议和要求。

作用:

(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

(2) 报告的写作本身就是一种创造性活动。

(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

5. 板书设计

(略)

6. 教学的反思总结

心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

《高中数学经典说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式